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Abstract: Estimation of State-Space models together with joint 

model selection, is a difficult computational problem. Recent 

developments in convex penalization to least squares estimation 

problems provide an elegant solution to this problem that needs 

efficient optimization to be put to work in potentially large scale 

settings. In this paper, we study an Alternating Method of 

Multipliers for a penalized Subspace-type approach to State Space 

estimation with a nuclear norm penalty. Our model takes into 

account possible missing data. More-over, we show how creating 

artificial missing data at random provides a simple approach to 

hyper-parameter selection. Numerical experiments are proposed to 

illustrate the performance of our method.  
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1. Introduction 

A real valued random discrete dynamical system    

admits a State Space representation if there exists a discrete 

time process  such that   

           

                                         
Where  is the noise, and , , 

  are parameter matrices.   

The Auto-regressive with moving average (ARMA) 

processes are sequences of the form  that satisfy 

       (1) 

for all , where  is a sequence of 

independent identically distributed random variables. Time 

series model are relevant for a wide range of applications in 

economics, engineering, social science, epidemiology, 

ecology, signal processing, 

    It is well known that ARMA processes admit a State Space 

representation and vice versa [7, 4]. 

Time series analysis is concerned with two estimation 

problems.  

The first is to select the orders  and  of the model.  

The second is to estimate  and 

. 

The model order selection problem is often performed using 

a penalized log-likelihood approach such as AIC, BIC, .  

We refer the reader to the standard text of Shumway and 

Stoffer [7] for more details on this standard  

problems.  

Turning to the estimation of  and , it is well known that the 

log-likelihood is unfortunately not a concave function, and 

that multiple stationary points exist which can lead to severe 

bias when using local optimization routines for such as 

gradient or Newton-type methods for the joint estimation of  

and .  In [7,3], an iterative procedure resembling the EM 

algorithm is proposed, which seems more appropriate for the 

ARMA model than standard optimization algorithms. 

However, no convergence grantee towards a global 

maximizer is provided.  A recent advance in the field was the 

subspace method which turned out to be equivalent to 

minimizing a convex criterion for the estimation of a State 

Space model under stability conditions.  

Since the recent successes of the LASSO in regression and its 

multiple generalizations [5], penalization has gained a lot of 

importance in computational statistics.  

In particular, the nuclear norm has played an important role 

for many problems in engineering, machine learning and 

statistics such as matrix completion,  

The goal of the present note is to study the nuclear norm 

penalization in the subspace method framework for convex 

minimization based ARMA estimation.  

2. The Subspace Method  

2.1 Prediction 

The problem of predicting  for  based on the 

knowledge of ,  and  can be solved easily 

following the approach by Bauer [2,8,1]. 

For given initial values , the State Space representation 

gives  

         

 On the other hand, the State Space representation implies 

that  

 
                        

                   

                                       
Thus, we obtain  

  

2.2  Prediction with Hankel matrices 

We can rewrite the prediction problem in terms of some 
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Hankel matrices as explained in [6].  

Define  

 

,       

And 

     

Define also 

 

, 

 

 
Both matrices are Hankel matrices. The first one represents 

the past values and and second one the future values.  

Define also the noise matrix  

 

 

Now, as explained in [6], we have the following relationship 

          (2) 

3. The Estimation Problem  

Using equation (2) , it is easy to build a least-squares 

estimator for the matrix ,  [9]. 

 In this section, we describe the nuclear norm-penalized 

estimator proposed in  [6].  

 

3.1  Estimating   

The matrix  can be estimated using a least squares 

approach corresponding to solving  

     (3) 

This procedure will make sense if the term  is small.  

This can indeed be justified if  is large and if     is small.  

Let us call   a solution of equation (3).  

 

3.2  Nuclear Norm penalized least squares for low rank 

estimation 

An interesting property of the matrix   is that its rank is 

the State's dimension  when  if full rank. Moreover,  

has small rank compared to  when  is large compared to .  

Therefore, one is tempted to penalize the least squares 

problem in equation (3) with a low-rank promoting penalty. 

One option is to try to solve  

     (4) 

The main drawback of this approach is that the rank function 

is non continuous and non-convex function.  

This renders the optimization problem intractable in practice.  

Fortunately, the rank function admits a well-known convex 

surrogate, which is the nuclear norm, i.e. the sum of the 

singular values, denoted by   . 

Thus, a nice convex relaxation of  (4) is given by 

       (5) 

As is well known, the penalized least-squares problem (5) 

can be transformed into the following constrained problem                   

    

for some appropriate choice of   

The finite sample performance of this estimator was studied 

in  [6]. 

 

3.3 The case of missing future data 

The problem of handling missing data in the matrix  is 

easy to state. Let  denote the number of observed entries 

in . 

Let  denote any operator of the user's 

choice which extracts the observed entries of  and 

stacks them into a real vector.  

Then, based on the arguments of the previous section, a 

reasonable estimator can be proposed as the solution of  

 (6) 

for some appropriate choice of .  

4. An ADMM for Computing  

4.1 The standard case 

Notice that equation (5) is equivalent to  

  

 
The Augmented Lagrange function is given by 

 
Minimize  for   given  and , by finding the 

gradient of  with respect to  

 
setting the gradient to 0 gives  

 
Therefore, 

 

 
and thus 

      

Now, the next step is performed by computing the 

approximation of  L  by solving the following problem of 

minimization 
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Setting , we obtain the optimization problem 

          

Thus, the solution is just defined by the thresholding operator 

as 

    

The last step consists in updating , which is simply done by 

setting 

. 

 

4.2 The case of missing data 

Notice that equation (6) is equivalent to  

 
subject to   M=L 

The Augmented Lagrange function is given by   

 

                   
 Minimize  for given  and  , by finding the 

gradient of   for  

 
setting the gradient to 0 gives  

Therefore, we obtain  

Which gives  

This last equation may now be solved using the conjugate 

gradient method.  

Now, the next step is performed exactly as in the previous 

case by computing the approximation of  by solving the 

following problem of minimization 

 
whose solution is just defined by the thresholding operator as 

     

The last step consists in updating , which is simply done by 

setting 

 

5. Numerical Experiments 

In this study we will perform some simulations with the 

model  

with , t=1,…,T independent zero mean Gaussian random 

variables with unit variance.  

Figure.1 shows a realization of the signal considered in this 

section.  

 

 
Figure 1. One realization of the signal 

Figure.2 illustrates the convergence of the ADMM method. 

 In all experiments, the stopping criterion was when the 

relative error in the  variable went below  10
-4

 .  

 
Figure 2.  Decrease of the Least squares criterion as a  

              function of the iteration number for 5 missing data 

and   =20. 

 5.1 Choosing the relaxation parameter   

 

 A very simple way to choose the hyperparameter  is to 

create artificially missing data in the set of future 

observations and tune the value of  so as to minimize the 

sum of squares of the errors of the estimator on these 

observations. Figure.3 shows the error for different values of 

.   

  
Figure 1. Error on the artificially missing data for selecting 

                the  best value for . Here, the best value is  
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Conclusion 

The goal of the present paper was to present a nuclear norm 

penalised least-squares estimation procedure for ARMA 

model selection and estimation  where the time series  is 

corrupted  by some noise and may have missing data. We 

proposed an ADMM type algorithm for this problem and 

studied the performances of the method on simulated data.  
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